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bstract

Models widely used to assess atmospheric chemical-dispersion hazards for emergency response rely on acute exposure guideline level (AEGL)
r similar concentration guidelines to map geographic areas potentially affected by corresponding levels of toxic severity. By ignoring substantial,
andom variability in concentration over time and space, such standard methods routinely underestimate the size of potentially affected areas.
nderestimation due to temporal fluctuation – applicable to chemicals like hydrogen cyanide (HCN) for which peak concentrations best predict

cute toxicity – becomes magnified by spatial fluctuation, defined as heterogeneity in average concentration at each location relative to standard-
ethod predictions. The combined impact of spatiotemporal fluctuation on size of assessed threat areas was studied using a statistical-simulation

ssessment method calibrated to Joint Urban 2003 Oklahoma City field-tracer data. For a hypothetical 60-min urban release scenario involving
CN gas, the stochastic method predicted that lethal/severe effects could occur in an area 18 or 25 times larger than was predicted by standard

ethods targeted to a 60-min AEGL, assuming wind speeds ≥2.0 or ≤1.5 m/s, respectively. The underestimation doubled when the standard
ethod was targeted to a 10-min AEGL. Further research and field data are needed for improved stochastic methods to assess spatiotemporal
uctuation effects.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Models widely used to assess atmospheric chemical-
ispersion hazards for emergency response purposes use acute
xposure guideline level (AEGL) or similar concentration
uidelines to map geographic areas potentially affected by cor-
esponding levels of toxic severity. AEGLs are widely applied
threshold” concentrations intended to prevent nearly all effects
f specified severity in a general exposed population [1].
owever, by focusing on predicted mean concentrations, such

tandard methods may typically ignore peak-hazard magnifica-
ions due to (1) integrated toxic load from releases that differ
rom any reference averaging times used, (2) temporal concen-

ration fluctuation at each location, and/or (3) spatial fluctuation
or heterogeneity) in the ratios of realized (e.g., measured) toxic
oads to corresponding loads modeled by standard methods. For
hemicals with acute toxicity that is predicted better by peak
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han by mean exposure levels, factor 1 (F1) and factor 2 (F2) may
ontribute to potential underestimation of hazard. Factor 3 (F3)
eflects non-modeled (residual) spatial variation in concentra-
ion due to non-homogeneous mixing within a dispersion plume,
nd so by definition also contributes to chemical-independent
nderestimation of peak levels of hazard. We are not aware of
ny previous study examining the combined impact of spatial
nd temporal fluctuations on assessed areas of airborne chem-
cal hazard. Moreover, methods currently available to address
ll three factors separately may be cumbersome or presently
nfeasible to implement, and no method has been proposed to
ddress their joint impact in a realistic urban setting. The aim of
he present study was to develop a simple, approximate method
o address all three factors for the purpose of protective urban
azard assessment, and to examine the magnitude of difference
etween its predictions and those produced by current methods

or a hypothetical but realistic urban exposure scenario.

Potential impacts of F1, F2 and F3 on estimates of peak hazard
ollow from the fact that likelihoods of acute chemical toxicity
ccurrence have been modeled reasonably well for many res-
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Nomenclature

C chemical concentration (ppm)
C(t) time-varying C at time t (ppm)
CT constant C for exposure duration T (ppm)
CTo constant C for exposure duration To (ppm)
CT , or Cn

T TWA value of C(t), or of [C(t)]n, for 0 ≤ t ≤ T
(ppm, or ppmn)

F1 hazard magnification factor due to T/To > 1
F2 hazard magnification factor due to C(t) fluctuation
F3 hazard magnification factor due to stochastic spa-

tial heterogeneity in observed relative to modeled
values of L1

Fs product of terms Fi with i from set s = {1,2,3}
F∗

s statistical confidence limit on Fs

H high wind speeds (≥2.0 m/s)
L low wind speeds (≤1.5 m/s)
Ln toxic load conditional on CT and n (ppmn mina)
Ln toxic load conditional on C(t) and n (ppmn min)
L∗

1 statistical confidence limit on L1 (ppm min)
Mn (F2)n, the nth moment of normalized concentra-

tion
n toxic load exponent
r sample Pearson product-moment correlation

coefficient
R2 r2, fraction of explained variance
SED L1, or static equivalent dosage (ppm min)
t time (min)
T exposure duration (min)
To reference exposure duration (min)
TTWA averaging period over which TWA estimate of

C(t) is made (min)
TWA time-weighted average

Greek symbols
θ local wind direction (degrees)
θ′ angular displacement relative to plume-model

centerline defined by θ and the source location
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ρn toxic load ratio Ln/Ln

iratory toxicants using a log-probit model [2] of static toxic
oad Ln, namely a Gaussian function of a linear transformation
f log(Ln), with Ln defined as

n =
∫ T

0
Cn

T dt = Cn
T T, (1)

n which CT is a constant (static, non-varying) chemical con-
entration in respired air over time t during an exposure period

≤ t ≤ T, and n is referred to as the toxic load exponent [1,3–6].
he special case in which n = 1 is known as Haber’s law,
nd L1 is sometimes referred to as “dosage” or “integrated

a F or the purpose of analyzing F3 variability (Fig. 4), integrated dosage L1

as normalized by released tracer mass, and expressed in units of s/m3.
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osage”. A constant concentration CT appears in Eq. (1) because
xperimental exposures used in animal inhalation acute-toxicity
xperiments that now serve as the empirical basis for most if not
ll currently available chemical-specific estimates of n typically
nvolved the application of nearly constant chemical concentra-
ions in air (see, e.g., [5] and [7]). By this model, exposure for a
eference period To, such as To = 10 min, to any concentration(s)
ess than or equal to a corresponding guidance (we shall assume
EGL) concentration CTo is estimated to comprise an exposure

ufficiently low to protect against occurrence of a corresponding
evel of toxic severity in nearly all members of a general exposed
opulation, including relatively susceptible individuals, whereas
opulations exposed to concentrations >CTo “could experience”
hat level of toxic severity ([1], p. 35).

Factor F1 affects the application of Eq. (1) to assess haz-
rds from exposure to relatively constant concentrations, for
xposure periods that happen to differ from those associated
ith available time-specific AEGL guidelines. If exposure is

xtended to some fixed duration T > To, the corresponding max-
mum constant concentration CT adequate to protect against the
ame endpoint is, according to Eq. (1), less than CT by the
actor (T/To)1/n. Exposure to any constant concentration CT >

To (To/T )1/n would be non-protective according to AEGL cri-
eria based on Eq. (1). Hazard underestimation due to F1 is
voided if the exposure duration of interest is included among
vailable guideline-concentration durations (which for AEGLs
re: 10 min, 30 min, 1 h, 4 h and 8 h), and this duration is used as
he reference period To. However, exposure durations of interest

ay differ from available durations or from a reference duration
pplied by default.

Interpolation methods [e.g., [8]] can easily address F1, but
uch methods address neither concentration-related temporal
uctuation (F2) nor spatial variation (F3), which may separately
r jointly pose a potentially greater source of hazard underesti-
ation. Concentration fluctuation has long been well recognized

o be a critical consideration in order to prevent gross under-
stimates of acute hazards posed by respiratory exposure to
oxic chemicals [3–6,9–13]. Methods developed to address F2
14–16] presently require location-specific estimates of concen-
ration fluctuation that typically are not available, due both to
he inherent stochastic nature of fluctuation itself, and to a lack
f fluctuation data for large urban areas of greatest practical
oncern. While available models such as HPAC that implement
econd-order closure theories do provide a way to estimate F2
17,18], such estimates have not yet been validated in relation to
orresponding experimental urban dispersion-fluctuation data.
actor F3 arises from local turbulence that inevitably leads to
tochastic heterogeneity in the value of Ln measured or experi-
nced at different locations, above and beyond variation in Ln

hat may be predicted ex ante even by the most sophisticated
ispersion forecasting models currently practical to implement.
revious studies of hazard underestimation potentially associ-
ted with F3 have focused on the case of n = 1, without regard

o other exposure-related sources of potential hazard underesti-

ation [19,20].
As mentioned above, F1 is properly addressed if AEGLs of

he correct exposure duration are available and are applied. Some
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ay assume that other factors, F2 and F3, typically will only
arginally affect hazard assessment for atmospherically dis-

ersed chemicals, and/or that such potential effects are already
ccounted for by “uncertainty” or safety factors routinely incor-
orated into AEGLs. However, such safety factors may vary
remendously from chemical to chemical, and can be quite low
or some important toxic industrial chemicals (e.g., a factor of
ust eight in the case of hydrogen cyanide) [21]. AEGL safety
actors are not derived with reference to exposure-related fac-
ors such as F2 or F3, nor is the relationship between exposure

odeling issues and the intended application of AEGLs even
entioned in underlying AEGL-methodology documentation

1]. When AEGLs are applied without modification to assess
irborne chemical hazards under realistic conditions, factors
2 and F3 are likely to reduce the effective degree of protec-

ion relative to stated AEGL goals of protecting nearly all of
ny general exposed population against specified levels of toxic
everity. No previous study has explored such joint effects, either
uantitatively or qualitatively.

Here we develop and illustrate an approximate method to
ddress F1, F2 and F3 jointly for the purpose of protective urban
azard assessment. This method incorporates the first reported
stimates of F2 and F3 ever obtained directly from a large, urban
eld-study data set. After briefly describing the urban tracer
ata used to characterize F2 and F3, Section 2 presents the pro-
osed analytic approach, and then explains how the empirical
rban data were used to parameterize this approach. Section
summarizes the data analysis, its incorporation into the pro-

osed approach, and an illustrative application of the resulting
pproach to a hypothetical 60-min release of hydrogen cyanide
HCN) gas in a major US urban area. Sections 4 and 5 then con-
ider limitations of key assumptions used, study implications,
nd conclusions.

. Methods

.1. Urban tracer data

Collection of very detailed tracer dispersion data for the
argest US urban areas (like that modeled in the present study, as
escribed below) began only fairly recently, preceded by smaller
joint urban” studies of this type done in Salt Lake City and
n Oklahoma City. Tracer data for Oklahoma City, Oklahoma,
btained during the Joint Urban 2003 study (JU2003) [22–24]
ere selected to estimate the quantitative impact of all three fac-

ors considered, because this study currently provides the most
omprehensive set of fast-response-time measures required to
haracterize F2 under realistic urban conditions. This extensive
eld experiment included over a hundred scientists measur-

ng airflow, tracer concentration, and other variables pertinent
o urban dispersion. (For a detailed description of JU2003,
ee: http://ju2003.pnl.gov/.) During JU2003, atmospheric con-
entrations of the inert tracer gas, sulfur hexafluoride (SF6),

nd associated airflow were measured by instruments includ-
ng an array of geographically fixed field devices used during
0 intensive observation periods (IOPs), with additional airflow
easures taken over a 35-day period. Each 12-h IOP featured

L
w
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wo or three separate 30-min tracer releases, and several puff
eleases. Data for a total of 214 30-min time series, included in
ata previously modeled and analyzed by Gouveia [24], were
urther analyzed in the present study.

Source locations, release times, measured wind speeds and
irections (which varied for the different IOPs), and corre-
ponding instrumentation were summarized previously [22–24].
riefly, the tracer data comprise JU2003 tracer concentrations
easured by Lawrence Livermore National Laboratory (LLNL),

he Volpe National Transportation Systems Center (Volpe) of the
S Department of Transportation, and the National Oceanic and
tmospheric Administration (NOAA). The LLNL and Volpe

amplers were all within 350 m of the source, and a few within
0 m. The NOAA samplers (Programmable Integrating Gas
amplers, PIGS) were placed at street intersections within the
rban center (NOAA grid), and in arcs roughly 1, 2, and 4 km
rom the source (NOAA arcs). The Volpe, grid and arc sam-
lers all collected integrated sample data at a rate of ≤0.001 Hz.
wo types of high-speed LLNL detectors were deployed: Blue
ox (programmable bag samplers) with a sample-measure

ate of ≤0.04 Hz, and Miran (infrared spectrometric) samplers
ach with a 2.23 l chamber volume measuring SF6 at 1 Hz
ith throughput driven by a 45-l/min pump (providing mean

ffectively independent sampling periods of ∼3 s); each Miran
ampler was configured either as a point sampler, or as a line
ampler drawing air through ∼15 m of outstretched perforated
ubing. Raw concentration data in ppb by volume were analyzed
irectly to characterize F2; to characterize F3, concentration
ata (�g/m3) were integrated and divided by total microgram
F6 released to obtain corresponding normalized dosage (L1,
efined by Eq. (2) below, but expressed in �g s/m3 per �g SF6
eleased, i.e., in s/m3).

Average values of local wind direction (θ) and wind speed
ere measured at ≥1 Hz during each 30-min release, either by a
oung Model 05103 Wind Monitor placed at elevations ranging

rom 1 to 3 m in a Portable Weather Information Display Sys-
em station located near each release source (applied to model
ll LLNL, Volpe and NOAA grid concentrations, except those
rom six Park Avenue releases for which modeling was based on
ind measures made using a Metek USA-1 ultrasonic anemome-

er placed at 8.5 m elevation on the Arizona State University
ower), or by a Young Model 81000 ultrasonic anemometer
laced at the lowest (7.8-m) level of an LLNL crane situated
ownwind approximately midway between each release source
nd the NOAA arc samplers (applied to model all NOAA arc
oncentrations).

.2. Analytic model

For scenarios involving exposure at a fixed location for a dura-
ion T to a fluctuating concentration C(t) at all times t, 0 ≤ t ≤ T,
he corresponding dynamic toxic load (or “dosement” [9]) is
efined as ∫

n = ρnLn =

T

0
[C(t)]n dt = Cn

T T (2)

here overbar and T-subscript together denote time-weighted
verage (TWA) over duration T, where Ln was defined in Eq.

http://ju2003.pnl.gov/
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1) in terms of a constant concentration CT = CT , and where
n Eq. (2) conditioning on C(t) realized at each fixed location
s tacit. The fluctuating concentration C(t) is understood to rep-
esent a series of k discrete mean values each estimated over
n averaging-time period TTWA = T/k, with k chosen to ensure
hat TTWA is the minimum biologically relevant response period
ver which concentration fluctuation can increase toxicity rel-
tive to that induced by exposure to a corresponding average
oncentration [9,14].

The “enhancing factor” or “toxic load ratio” [9,15] ρn that
ppears in Eq. (2) is defined as the ratio of any given dynamic
oxic load to its corresponding static toxic load, which ratio is
as shown below) convenient to re-express as follows in terms
f the three factors defined above:

n = Ln

Ln

= (F1F2F3)n = (F1F3)nMn (3)

n Eq. (3), Mn denotes the nth sample moment of location-
pecific normalized concentration C(t) = CT during the interval
≤ t ≤ T, and is defined as

n = (F2)n = Cn
T

(CT )
n (4)

n particular, E(M2) = I2 + 1 where E is the expectation operator
nd I is often referred to as the “concentration intensity” (i.e.,
oefficient of variation, or standard deviation divided by the
ean) of C(t).
From Eqs. (1) and (2) and the factor definitions given above,

1 = (T/To)1/n (a constant, conditional on To and n), F2 mod-
ls normalized temporal variation in toxic load, and F3 models
esidual stochastic spatial variation in toxic load with E(F3) = 1
f the dispersion model used is unbiased. F3 was assumed to
ave a median equal to 1, corresponding to emergency condi-
ions under which bias-reducing optimization against real-time
oncentration data is not feasible. In the absence of any theo-
etical or empirical basis for assuming that F2 and F3 should be
orrelated, these factors were assumed to be statistically inde-
endent. This assumption was tested using LLNL Miran data
rom the JU2003 study.

Empirical Mn behavior was a focus of the concentration fluc-
uation experiments (CONFLUX) project conducted on salt flats
t the US Army Dugway Proving Ground in northwestern Utah,
n which an array of many very fast-response detectors was used
o measure propylene tracer gas continuously released for a
eriod of 30–35 min in each of a large series of open-terrain,
tmospheric dispersion studies covering a very wide range of
tmospheric conditions and release configurations [25]. Note
hese continuous-release durations were about the same as those
sed in the JU2003 study. Studies of CONFLUX data have
stablished that log(Mn) is very nearly linearly proportional to
(n − 1) log(M2)], in accordance with expectations based on a
ariety of (e.g., gamma, clipped gamma, clipped normal and

xponential) probability models found to provide reasonably
ood characterizations of variation in normalized C(t) observed
n a wide range of CONFLUX data [10,12,13,15]. The exponen-
ial model yields the particularly convenient expectation [13,15]
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hat

n ≈ Γ (n + 1)

(
M2

2

)n−1

(5)

hich by Eq. (4) implies that the factor F2 can be approximated
y

2 = Γ (n + 1)1/n

(
M2

2

)1−1/n

, (6)

hat is, by a monotonic function of n and of location-specific
ample moment M2. Data from the JU2003 urban tracer-release
tudy revealed substantial measured variance in M2, very lit-
le of which could be explained by downwind or crosswind
istance from release sources (see Section 3.1). Therefore, M2
alues in urban locations were modeled as random samples from
istributions estimated from M2 measures made using JU2003
ata.

We assume, as above, that a specified (reference) AEGL
efines a threshold value of constant chemical concentration
To , above which a general population exposed by inhalation

or duration To “could experience” a specified level of toxic
everity. The current practice of limiting actual population expo-
ures of duration To to a modeled static dosage L1 = CToTo
ay not be protective, because a non-negligible fraction of the

xposed population will inevitably incur a larger (by definition,
on-protective) dosage to an extent determined jointly by the
agnitudes of F3 variation and of the slope of log-probit dose-

esponse for the chemical of concern. Due to factors F1 and F2,
ven less protection is afforded if the same dosage limit CToTo
s applied over a period T ≥ To during which exposure occurs
o a dynamic, fluctuating concentration C(t) with a TWA con-
entration of CT—unless the value of CT adopted in this case is
ufficiently less than CTo so as to guarantee the same level of
rotection as that intended by the AEGL CTo limit under uniform
xposure conditions. For a generalized dynamic exposure sce-
ario, it is thus convenient to derive the corresponding dynamic
oxic load L1 – which shall be referred to as “static equivalent
osage” (SED) – as follows based on definitions given in Eqs.
2)–(4):

1 = CT T =
[

CTo

F1F2F3

]
T =

(
CTo

F{1,2,3}

)
T (7)

here Fs = Π
i ∈ s

Fi and s is any one of the seven possible com-

inations containing at least one of the indices {1,2,3}. A lower
onfidence limit L∗

1 on L1 is obtained by substituting the cor-
esponding upper confidence limit F∗

s for Fs in Eq. (7), noting
hat F∗

1 = F1 = a constant. The SED* value obtained by using
sufficiently high (e.g., 2-tail 95%) upper confidence limit
∗
s on Fs by definition provides a level of protection compa-

able to that intended by the reference AEGL concentration
To . Note that the product L1Fs is simply a convenient way

o denote L1 conditional on the absence of each factor involved

n Fs, which also is the case for L∗

1 and F∗
s . The SED mea-

ures described are all expressed in simple units (e.g., total
ntegrated ppm min), so calculations based on them can easily
e incorporated into a wide variety of modeling tools cur-
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ently available to assess atmospherically dispersed chemical
azards.

.3. Data analysis and model application

To model variability in F2 arising from that in M2, char-
cterizations and comparisons were done on fluctuation levels
xhibited in above-background sets of JU2003 concentration
ata obtained only from high-speed (1-Hz) LLNL Miran detec-
ors, up to nine of which were used simultaneously in all IOPs
uring each 30-min release. The concentration data were first
re-processed to delete pre- and post-release-pulse data involv-
ng below-background concentration data. In-pulse data sets
ere then combined and classified by sampler type, by time
lock (day versus night), and by urban-center wind speed divided
nto two approximately equally frequent categories – low (L)
or speeds ≤1.5 m/s, and high (H) for speeds ≥2.0 m/s – which
xcluded intermediate speeds simply to create a more meaning-
ul dichotomy in the wind variable analyzed.

To model F3 variability, characterizations and comparisons
ere done using scores Zi,k = (δi,k − μk)/σk obtained for the rel-

tive residuals δi,k = log10[(measured L1)/(modeled L1)]|{i,k}
orresponding to each ith measure made by detector type k (with
= LLNL, Volpe, NOAA grid, or NOAA arc), and where μk
nd σk are the sample mean (i.e., bias) and standard deviation of
i,k for each k. Corresponding estimates of μk, σk and modeled
osage were obtained for the present illustrative study using
for convenience) a simple Gaussian-plume model previously
escribed [24]. Conditional on each known experimental tracer
elease mass, the Gaussian model was conditioned only on aver-
ge values of local wind direction (θ) and wind speed measured
s described above (Section 2.1). The plume model was not oth-
rwise optimized to fit additional data obtained for each set of
racer measurements, such as angular displacement (θ′) relative
o the plume-model centerline that was defined by θ and the
ource location.

Thus obtained, F3 was used to characterize bias-adjusted
patial error in integrated dosages (or TWA concentrations)
redicted by the Gaussian-plume model used, rather than the
ODI dispersion model (applied for toxicity hazard assessment
s described below) for which a complete set of JU2003 model-
ng results are not yet available. The Gaussian-plume model
sed is less complex (and, at least for larger-scale applica-
ions, less accurate) than the particle-tracking LODI model.
owever, representing bias-adjusted magnitudes of difference
etween measured and modeled concentrations, F3 by defini-
ion is not affected by any difference in relative model accuracy.
oth the Gaussian and (currently implemented) LODI mod-
ls are designed to predict only ensemble mean concentrations
ithin an evolving plume, rather than F3-type heterogeneity

i.e., variance) comprising “random” deviations between actual
or measured) concentrations and mean values predicted at
ny location by either model. If a single, common underlying

ixing mechanism were the cause of all such characteris-

ic (e.g., ground-level) spatial variability in concentration that
ccurs in dispersion plumes realized under similar driving-
ource and meteorological conditions, then a measured F3 error

o
g
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istribution under those conditions could have a fairly sim-
le stochastic form. The present study includes a test of this
rediction.

Spatial dosage heterogeneity (F3) was also analyzed by
elease period (day versus night) and by angular displacement
θ′) relative to the plume-model centerline. To prevent random
ffects due to sensitivity limits and to poorly modeled lateral
r upwind mixing processes, these analyses were done using
nly modeled and measured values L1 ≥ 10−7 s/m3 at detector
ocations for which |θ′| ≤ 45◦. The F2- and F3-related data were
haracterized using 2-tail t-tests (or, as applicable, Welch’s t-
ests) to assess differences in normalized means [26], Bartlett’s
hi-square tests to assess corresponding variance homogeneity
27], Kolmogorov 2- or 1-sample or (or, in comparisons involv-
ng >500 samples) corresponding asymptotic Smirnov tests to
est for difference between sample cumulative mass functions
cmfs) or between a theoretical cumulative distribution function
cdf) and a sample cmf, respectively [28,29], and chi-square tests
o test for difference between a sample cmf and an estimated
df. To obtain 10-min AEGL-based L∗

1 values for the illustra-
ive application described below, Fs variability was modeled
sing Monte Carlo methods to obtain 5000 sample vectors of
i for i ∈ s, each modeled as described above, together with an

terative optimization procedure to assure zero Pearson correla-
ions ± <10−5, noting that F1 is a constant, and two types of F2
ere calculated: one each for low (L) and high (H) wind condi-

ions, respectively. These calculations were all performed using
athematica 5.0® and related RiskQ software [30,31].
The method described above to assess the impact of fac-

ors F1, F2 and F3 was applied to a hypothetical scenario
nvolving a 60-min, continuous ground-level release of 1000 kg
f HCN gas (0.278 kg/s) at a fixed location during July of
005 in a major US urban area, with wind from the SW
t 2 m/s measured at 10 m, and other meteorological condi-
ions typical of the specific location used for the hypothetical
elease. In this application, a toxic load exponent of n = 2.6
as assumed for lethal or severe HCN effects [7, vol. 2].
tmospheric HCN dispersion was modeled using the LLNL
ODI model, which includes a suite of meteorological and
ispersion models (http://narac.llnl.gov/modeling.php). Mete-
rological input data on mean wind, pressure, precipitation,
emperature, and turbulence variables are generated using a
ariety of interpolation methods and atmospheric parameter-
zations, including non-divergent wind fields produced by an
djustment procedure based on the variational principle and
nite-element discretization [32]. The LODI dispersion model
olves the 3D advection-diffusion equation using a Lagrangian
tochastic, Monte Carlo method to simulate the processes of
ean wind advection, turbulent diffusion, first-order chemical

eactions, wet deposition, gravitational settling, dry deposition,
uoyant/momentum plume rise, and (for non-chemical appli-
ations) radioactive decay and production as well as bio-agent
egradation. The LODI model is linked at LLNL to GIS and

ther databases providing topography, geographical data, demo-
raphic data, chemical-biological-nuclear agent properties and
ealth risk indices, real-time meteorological observational data,
nd global and mesoscale forecast model predictions [33,34].

http://narac.llnl.gov/modeling.php
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Fig. 2. Log–log plot of measured values (points) of the nth vs. the second
normalized moments of C(t), from 214 sets of in-pulse, above-background con-
centration data on tracer dispersion obtained by LLNL detectors arrayed in
Oklahoma City during the JU2003 study, compared to corresponding expected
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. Results

.1. Concentration statistics

A total of 214 sets of 1-Hz measures of above-background
ispersed-tracer concentration C were measured during and/or
fter each corresponding 30-min release by LLNL detectors
rrayed in Oklahoma City during the JU2003 study (Fig. 1).
he mean (±1 standard error of the mean) of plume-passage
urations T detected at all locations was 34.1 ± 0.4 min. The
rithmetic mean autocorrelation value for (211) data sets with
≥ 10 min drops from 1 to 0.80, 0.50, 0.34, 0.16 and 0.06 after

ags of approximately 6, 17, 30, 60 and 120 s, respectively. To
ssess the effect of averaging-time period TTWA on M2 calcu-
ation, corresponding arithmetic mean and upper-bound values
f M2 for these 211 data sets were estimated from C(t) over
orresponding durations T using a range of different averaging-
ime periods TTWA, including that used by the Miran detectors
sampling at 1 Hz, TTWA = 1 s). These means (and corresponding
pper 2-tail 95% confidence limits) were found to decrease from
00% of those estimated using TTWA = 1 s, to 91%, 88%, 82%,
8% and 52% (and to 97%, 91%, 86%, 75% and 63%) at TTWA
alues of 15, 20, 30, 60 and 120 s, respectively. Therefore, mean
nd upper-bound M2 calculations from 1 Hz measures of C(t)
n these data sets would (due to the substantial autocorreleation
oted) be reduced only slightly (by ∼10% or less) if M2 were
nstead calculated using longer averaging times ≤ 20 s.

Associated empirical measures of Mn versus M2 obtained
or n values ranging from 3 to 5 were found to be reasonably
onsistent with corresponding relationships expected according
o approximation (6) under the assumption that C(t) is exponen-
ially distributed (Fig. 2). Sample cmfs obtained for M2 measures
ade by LLNL Miran point samplers during periods when urban
ind speed was low (≤1.5 m/s), versus high (≥2 m/s), are shown

n Fig. 3, together with corresponding gamma cdfs. The gamma
arameters {α, β}= {6.63, 0.0837} were fit by the method of
oments for low wind (L) data, and{3.53, 0.0837} for high wind

H) data, where {α, β}= {μ2/σ2, σ2/μ} using sample mean (μ)
nd variance (σ2) estimates obtained for each wind speed range.

he F2 characterization was restricted to data from 64 versus 41
oint (and not from 30 versus 54 line) LLNL Miran samplers
perating under L versus H conditions, respectively, because

ig. 1. Cumulative distributions of TWA concentration, CT, and maximum
oncentration, Max(C(t)), from 214 sets of in-pulse, above-background con-
entration data on tracer dispersion obtained by LLNL detectors arrayed in
klahoma City during the JU2003 study.

L
t
r
a

F
L
(
t

elationships (solid curves) assuming C(t) has an exponential distribution. Solid
s. open points denote measures during low (≤1.5 m/s) vs. high (≥2.0 m/s) urban
ind speeds, respectively.

he L-specific M2-cmfs were significantly different (p = 0.030),
he line sampler data having a ∼20% smaller mean (p = 0.040)
nd about half the variance of the point sampler data. The
-specific M2-cmfs for point-sampler data did not differ sub-

tantially (p = 0.089). The point-sampler L- and H-specific cmfs
Fig. 3) differ significantly (p = 0.017), and to approximately the
ame extent as mentioned above for the comparison of L-specific
oint versus line sampler data; the gamma distributions shown
re good fits to these corresponding cmfs (p > 0.30). A simi-
ar comparison indicated no significant differences (p > 0.05)
etween 124 daytime and 90 nighttime M2 measures, regard-
ess of sampler type. Using 115 sets of data restricted to Mirans
ocated downwind of each release source for which |θ′| ≤ 45◦,

2 measures were found to have small, negative, non-significant
orrelations (R2 ≤ 0.024, p > 0.10) with downwind and cross-
ind distances from the release source.
A comparison of log10-transformed values of (bias-adjusted)

easured values with corresponding modeled values of total
ntegrated dosage (L1, in s/m3) in Oklahoma City during the
U2003 study (Fig. 4) indicates general consistency in the mag-
itude of residual variability for measures made by combined

LNL and Volpe detectors compared to those made by more dis-

antly positioned NOAA grid and arc detectors. Corresponding
esidual statistics are summarized for each data set in Table 1,
nd the relation between |θ′| and the variance of the residu-

ig. 3. Cumulative distributions (cmfs) of (unitless) M2 values measured by
LNL Miran point samplers during periods when urban wind speed was low
≤1.5 m/s, bold step function, L) vs. high (≥2 m/s, light step function, H),
ogether with corresponding fitted gamma distributions.
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Table 1
Measured JU2003 concentrations vs. non-optimized Gaussian model predictionsa

Detector-specific data set (k) n Release time Biasb, μk Standard deviation, σk Geometric standard deviation, GSD = 10σk

LLNL point 97 All 0.341 0.612 4.09
LLNL line 52 All 0.226 0.684 4.83
Volpe 139 All 0.248 0.586 3.85

LLNL + Volpe
211 Day 0.252 0.628 4.25

77 Night 0.336 0.568 3.69
288 All 0.275 0.613 4.10

NOAA grid
289 Day 0.155 0.431 3.35
109 Night 0.326 0.658 4.55
398 All 0.201 0.508 3.22

NOAA arc
151 Day 0.146 0.421 2.64
104 Night 0.434 0.526 3.35
255 All 0.263 0.487 3.07

LLNL + NOAA 941 All 0.241 0.538 3.45

a The number, sample mean and sample standard deviation are listed for residual concentrations δi,k = log10(measured tracer concentration, ppmv) − log10(predicted
tracer concentration, ppmv) for each kth data set, using measured and corresponding Gaussian-plume-model predicted values described in Section 2.

b Model bias could be reduced by optimizing, e.g., wind direction in the Gaussian plume models used [24]. The measured wind direction at the release site assumed
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n each of those models fairly accurately predicted the distribution of correspo
ystematic shift of such distributions away from their predicted centerlines in
eleases [24; cf. Fig. 5 in that study and related discussion therein]. Such shifts

ls is summarized in Table 2. LLNL and Volpe data subsets
ere combined because no significant differences were found

mong corresponding sample δi,k means or variances, respec-
ively (also found true when NOAA grid versus arc data were
ompared). The sample variance of NOAA-data log10 residuals
∼0.502) is slightly but significantly less than that (∼0.612) of
ombined log10 residuals of measures made by the more closely
ositioned LLNL/Volpe detectors (p < 0.001). While the vari-
nce of LLNL + Volpe data residuals for the nighttime releases
oes not differ significantly from the daytime-residual variance
p = 0.29) shown in Table 1, the grid- and arc-specific variances
f NOAA-data residuals for nighttime releases listed in that table
re significantly greater than the corresponding daytime-residual
ariances (p < 10−5). Notably, only one of the six sets of NOAA
r combined-LLNL residuals categorized by release time has a
eometric standard deviation (GSD) that is <3 (Table 1).
The variance of residuals δi,k is clearly positively correlated
ith the absolute angle |θ′| measuring relative deviation from

he non-optimized plume-model centerline (Table 2). The GSD
f measured-to-modeled L1 ratios corresponding to these resid-

a
n
w
p

able 2
elation between |θ′| and heterogeneity in the ratio (ρ) of measured-to-modeled dosa

ange of angle θ′ from
ource to detector relative to
lume-model centerline

Mean value of |θ′| (◦) Number of
measures, m

θ′| ≤ 9◦ 3.6 267
◦ < |θ′| ≤ 18◦ 13.8 250
8◦ < |θ′| ≤ 27◦ 21.8 151
7◦ < |θ′| ≤ 36◦ 31.0 181
6◦ < |θ′| 40.4 92

a δ = log10(ρ) where ρ = (measured L1)/(modeled L1), based on m total measures for
SD = geometric SD
b The listed variances differ significantly by Bartlett’s test (p = 1.5 × 10−6).
c Ratio (q) of upper 2-tail confidence limit (CL) on ρ to the median value of ρ unde
g normalized concentration realized for some of the releases, but for others a
d that unmodeled plume curvature was likely to have occurred during these
argely explain the estimated bias terms listed.

als increases from just below 3 near the centerline, to almost 5
oward the upper (45◦) boundary placed on |θ′| for the purpose of
haracterizing F3 (Table 2). In contrast, using 115 sets of data
estricted to Mirans located downwind of each release source
or which |θ′| ≤ 45◦, M2 measures were found to be virtually
ncorrelated with |θ′| (R2 = 0.060, p = 0.69).

The simple Gaussian model accounts for R2 = 65.5% of the
ariance of the combined set of 941 bias-adjusted L1 mea-
ures plotted in Fig. 4 in relation to corresponding modeled
alues of L1. As noted above, |θ′| significantly predicts the
ariance of corresponding residuals, which by definition is unaf-
ected by bias-adjustment. However, adding either θ′ or |θ′| to
og10(modeled L1) as a linear predictor of log10(measured L1)
id not significantly increase the explained residual variance
2 (F1,938 ≤ 1.11, p > 0.29). The distribution of correspond-

ng Zi,k scores is ∼N(0,1) (p = 0.18), and is consistent with an

pproximately common, underlying lognormal distribution of
ormalized spatial modeling errors with ∼95% of observations
ithin a factor of about 10 of the (median) Gaussian model
rediction. Similar results were obtained when spatial variabil-

ge (L1) at different Oklahoma City locations in the JU2003 studya

SD(δ) Var (δ)b GSD (ρ) Ratioc of upper 95% CL
to median value of ρ

0.459 0.210 2.88 7.9
0.485 0.236 3.06 8.9
0.559 0.313 3.62 12.5
0.591 0.349 3.90 14.4
0.680 0.463 4.79 21.5

which L1 ≥ 10−7 s/m3 and |θ′| ≤ 45◦. SD = standard deviation, Var = variance,

r the assumption that ρ is lognormally distributed, i.e., that q = GSD(ρ)1.96.
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Fig. 4. Comparison of bias-adjusted measures (L′
1) and corresponding modeled

values of total integrated dosage L1 in Oklahoma City during the JU2003 study,
conditional on L1 ≥ 10−7 s/m3 and |θ′| ≤ 45◦, in which m data values were
collected by detector type k: combined LLNL and Volpe detectors (©, m = 288,
k = 1), NOAA grid detectors (�, m = 398, k = 2), and NOAA arc detectors (�,
m = 255, k = 3). Each ith bias-adjusted measure from detector type k indicated on
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Fig. 5. Cumulative distributions (cdfs) of (unitless) Fs for the indicated values
of s (top and bottom plots): {2} (two medium-width curves), {3} (single thin
curve), and {2,3} (two thick curves), during periods when urban wind speed is
low (≤1.5 m/s, L) vs. high (≥2 m/s, H). Greater detail (bottom plot) highlights
each curve’s upper 2-tail 95% confidence limit (Fs value at which that curve
crosses the horizontal dashed line). The s = {2} and s = {2,3} pair of curves
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he Y-axis is defined as L′
1 = 10−μk (L1|{i, k}), using corresponding estimated

iases μk listed in Table 1.

ty data from were analyzed by wind speed category (L versus
). Overall, the normalized spatial variability data are thus con-

istent with random, approximately lognormal variability with
5% of observations within a factor of approximately 10 of the
median) Gaussian model prediction. Thus, F3 was modeled as a
ognormal distribution with a median of 1, a geometric standard
eviation of exp(1.175) = 3.238, and an upper 2-tail 95% confi-
ence limit of F∗

3 = 10. Note this limit, F∗
3 = 10, corresponds

o a ratio defined identically to that for which values (ranging
rom 7.9 to 21.5) are listed in the right-most column of Table 2
n relation to corresponding values of |θ′|. Table 2 implies that
∗
3 could more accurately be modeled as a function of |θ′|, in
way that would (relative to setting F∗

3 = 10 independent of
θ′|) reduce its impact along the plume centerline by ∼20%, but
agnify this impact ≥2-fold for |θ′| ≥ 45◦. However, the sim-

ler approach of modeling F3 as lognormal with F∗
3 = 10 was

sed to implement the illustration discussed in Section 3.2.
Using the 115 sets of data referred to above obtained by

irans located downwind of each release source for which
θ′| ≤ 45◦, M2 measures at these sites were found to have only
marginally significant, small positive correlation (R2 = 0.046,
= 0.021) with corresponding bias-adjusted residuals (or with
orresponding scores Zi,k) upon which the lognormal model
ssumed for F3 was based. Corresponding correlations between
2 (calculated using approximation 6, using n = 2.6 or n = 3) and
3 were even smaller (R2 ≤ 0.045, p ≥ 0.022). Because only rel-
tive low-speed detectors were used from hundreds to thousands
f meters downwind in the JU2003 study, F2 could not be esti-
ated and consequently no assessment of potential correlation
etween F2 and F3 could be made at those positions.
Distributions and upper limits on Fs corresponding to F2

under assumed low and high wind speed conditions) and/or F3
s defined above are shown in Fig. 5.

r
o
2
p

hat correspond to low-wind (L) conditions (e.g., the rightmost pair of curves in
ottom plot) reflect greater variability than those that correspond to high-wind
H) conditions.

.2. Application to hypothetical chemical-release scenario

Table 3 summarizes results obtained when the proposed
pproach was applied to derive L∗

1 values for HCN. Ten- and
0-min AEGL assessments for the hypothetical HCN-release
cenario described in Section 2 are shown in Fig. 6a and b.
he 10-min AEGL plot (Fig. 6a) shows three LODI-generated
ontours along values of L1 = CTo × To, where T = To = 10 min,
nd where CTo = each of the three, severity-level-specific 10-min
EGL concentration values for HCN. The impact of factors F1,
2 and F3 on predicted threat zones for this scenario was cal-
ulated simply by having LODI use corresponding SED-related
stimators (involving L∗

1) instead of L1 to generate the plotted
EGL-specific contours. Corresponding results of combining

he illustrative application of the proposed approach with LODI
ssessments for the same scenario are shown in Fig. 6c and d for
∗
1F∗

3 under high versus low wind speed conditions, respectively,
nd in Fig. 6e and f forL∗

1 under high versus low wind speed con-
itions, respectively. Corresponding LODI estimates of affected
reas and maximum affected population (assuming ambient
xposures, without mitigation due to indoor air turnover) are
hown in each panel of Fig. 6 for the three AEGL toxic severity
evels (1 = mild, 2 = serious, 3 = severe). Compared to the default
0-min AEGL approach (Fig. 6a), application of the proposed
ethod in this illustration under low wind conditions (Fig. 6f)
esulted in magnification of estimated areas affected by factors
f approximately {18, 36, 51} for AEGL severity levels {1,
, 3}, respectively, and magnification of estimated maximum
opulation affected by factors of approximately {6.9, 12, 22}
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Table 3
10- and 60-min AEGLs for HCN, and corresponding SED valuesa

10-min AEGL-3
(ppm) (ab)

60-min AEGL-3
(ppm) (b)

L∗
1F∗

3 highb

(ppm min) (c)
L∗

1F∗
3 lowb

(ppm min) (d)
L∗

1 highb

(ppm min) (e)
L∗

1 lowb

(ppm min) (f)

AEGL severity level
1 (mild) 2.5 2.0 21 10 16 9.1
2 (serious) 17 7.1 130 73 63 48
3
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(lethal or severe) 27 15 180

a SED = static equivalent dosage.
b Dispersion model cases (a–f) correspond to panel letters that appear in Fig.

or AEGL severity levels {1, 2, 3}, respectively. The resulting
agnification factors were thus substantial (five of the six fac-

ors are > 10), and these factors increase (nearly linearly) with
ncreasing AEGL severity level. This magnification was due pri-

arily to F2 and F3 (temporal and spatial fluctuation), rather than
o F1 (AEGL averaging time), since areas potentially affected
t each severity level associated with 60-min AEGLs were only
bout twofold greater than corresponding areas associated with
0-min AEGLs (Fig. 6b versus a).

. Discussion

The results obtained indicate that application of the proposed
ethods, which account more realistically for spatial and tem-

oral concentration fluctuations than do current methods, could
esult in substantially greater levels of assessed hazard at each of
hree levels of toxic severity considered. In particular, the poten-
ially severely or lethally affected area estimated by a 10-min (or
0-min) AEGL approach was shown, for the hypothetical release
cenario considered under low wind conditions, to be about 50
or 25) times less than that estimated using the proposed methods
o account more realistically for the combined impact of spatial
nd temporal concentration fluctuations. The results obtained
re clearly preliminary because only limited (JU2003) data were
vailable upon which to base a model accounting for temporal
nd spatial concentration fluctuations in a realistic urban setting.
nalysis of urban dispersion data from additional urban settings
ill be required to develop a more general basis for improved
odeling of the impact of temporal and spatial concentration
uctuations in urban settings.

The following six important additional issues were not
ddressed in the proposed modeling approach illustrated, which
ointly may render the proposed approximate approach slightly
r moderately biased either toward overprediction or toward
nderprediction of airborne chemical hazards.

1) Downwind and crosswind distance were observed to explain
very little of the variance in concentration fluctuation inten-
sity observed in that subset of JU2003 data obtained using
relatively high-speed detectors (see Section 3.1), in con-
trast to previous indications that these factors may predict
some aspects of fluctuation exhibited in tracer-release stud-

ies conducted in open-field or rectangular-obstacle-array
conditions in an otherwise rural environment [10,25,35].
Concentration fluctuation intensity has been theorized as
well as observed in continuous-release studies to diminish
94 120 79

h = higher wind speeds (≥2.0 m/s); low = lower wind speeds (≤1.5 m/s).

with downwind distance X, albeit in a nonlinear way, e.g.,
modeled by Ma et al. [36] as M2 = (a + b/X)2 + 1 for X > 1
with fitted parameters a and b, and as M2 ∝ X1/2 by Yee
et al. [25] who concluded that “the alternative interpreta-
tion that [our observed] fluctuation intensities achieve near
constancy in level with downwind distance within the tur-
bulent convective regime of cloud development cannot be
ruled out, given the experimental scatter in our data”. Pre-
vious studies have thus concluded that relative centerline
concentration fluctuation intensity has “considerable scat-
ter” and “remains significant at large distances from the
source, particularly for ground-level sources” [37], and “is
seen to change very slowly with downwind distance” [25].
Omission of this factor from the proposed approach to model
F2 may thus result in a small to moderate degree of hazard
overprediction. More detailed study of urban continuous-
release data is required to assess the relative importance of
this omitted factor.

2) In contrast, relative concentration fluctuation intensity has
been observed in continuous-release studies to increase
supra-linearly (e.g., approximately exponentially) with
increasing crosswind distance from the plume centerline
[10,25]. While this relationship was not evident from the
present analysis of near-field JU2003 data, insofar as M2 and
|θ′| were found to be nearly independent (Section 3.1), this
issue could not be explored for data collected farther down-
wind in this study because the sampling rates used at those
positions were too slow to measure M2 at biologically rele-
vant intervals. Potential off-centerline magnification of M2
unaddressed by the proposed approximate method implies
that it may underpredict increased hazard due to tempo-
ral concentration fluctuations. Again, more detailed studies
of urban continuous-release data are required to assess the
relative importance of this omitted factor.

3) For the present study, concentration fluctuation intensity
was measured using an effective averaging period of ∼3 s.
A greater sampling period on the order of 5–30 s likely
better reflects the biologically relevant averaging time for
respiratory toxicants such as HCN [9,14]. Use of a greater
averaging period is expected to reduce corresponding cal-
culated concentration fluctuation intensities, according to
empirically verified theoretical expectations [38,39]. How-

ever, the JU2003 concentration data were found to be
sufficiently autocorrelated to ensure that this effect was min-
imal for averaging periods within the range of those that are
biologically relevant. Omission of this factor thus in this
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case implies only a slight overprediction of increased haz-

ard due to temporal concentration fluctuations. It must also
be borne in mind that results from this study are applica-
ble only to urban areas, given that concentration fluctuation
intensity measures made in continuous-release field experi-

ig. 6. LODI predictions of atmospheric dispersion and hazard level posed by a hyp
eriod in an urban California area. Assessments made using the current method for 10- a
o corresponding assessments made using the proposed modified method for L∗

1F∗
3 u

∗
1 under high vs. low wind speed conditions (panels e and f, respectively). LODI es

o each of three AEGL toxic severity levels (1 = mild, 2 = serious, 3 = severe) are show
rdous Materials 152 (2008) 228–240 237

ments involving a plume dispersing through a regular array

of obstacles (intended to model urban/suburban conditions)
were observed to be “generally a factor of between 2 and
5 smaller” than those measured in otherwise similar open-
terrain plume experiments [35].

othetical ground release of 1000 kg of hydrogen cyanide (HCN) gas over a 1 h
nd 60-min AEGLs (panels a and b, top left and right, respectively) are compared

nder high vs. low wind speed conditions (panels c and d, respectively), and for
timates of areas and maximum potentially affected populations corresponding
n in each panel.
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4) The approximate method used to characterize F3, reflecting
non-modeled (residual) spatial variation in dosage (time-
integrated concentration) due to non-homogeneous mixing,
relies on a bias-adjusted comparison of one model’s dis-
persion predictions to observations. Such a characterization
of residual error can be model-dependent only in ways
that reflect the complexity of the physics incorporated in
the model, the numerical error in the model, as well as
the initial and boundary conditions supplied to the model
and other model-dependent factors. In the present study, F3
was characterized using a Gaussian-plume model applied
to JU2003 data (Fig. 4), for simplicity without regard to
off-centerline crosswind position indexed by |θ′| (the effect
of ignoring |θ′| was discussed in Section 3.1, in relation
to Table 2). To illustrate potential implications, this sim-
plistic characterization was mapped onto dispersion results
obtained for a much larger US urban location using a dif-
ferent model (LODI). The approximate lognormality of
the distribution of combined JU2003 adjusted residuals
obtained in this study is consistent with a common underly-
ing (e.g., chaotic microscale turbulence) mechanism likely
to generate the type of stochastic spatial heterogeneity in
time-integrated concentrations denoted by F3. Interestingly,
a stochastic multifractal model describes a lognormally
distributed (spatial or temporal) process if its multifractal
(Levy-distribution) index α approaches 2 within its bounds
0 ≤ α ≤ 2, and multifractal-model-fitted α values between
1.6 and 1.8 appear to be the norm for analyzed meteoro-
logical data, including experimental data on atmospheric
dispersion of SF6 tracer gas [40]. Because both the Gaussian
and LODI models used in this study are designed to predict
only ensemble mean plume concentrations, future LODI
analysis of JU2003 data may not substantially alter the F3
characterization applied to the hypothetical scenario consid-
ered here. Such an expectation is supported by the similarity
in magnitudes of residual dosage-related variation observed
when data obtained from 0.1 to 6 km downwind during 18 1-
h SF6 tracer-release experiments in the JU2003 study done
in Oklahoma City were compared to corresponding pre-
diction made by six different dispersion models, including
five urban-adapted Gaussian-type models and one empirical
“one-line” urban model [41]. Although the predicted-versus
-observed scatter plots from that study show somewhat less
relative variation than that indicated for F3 by Fig. 4 in the
present study, the former study involved far fewer measures,
and these were all plotted in terms of maximum 1-h average
concentration rather than dosage (L1) [41]. In future studies,
it will be important to continue to compare the performance
of different modeling approaches to characterize F3.

5) In simulating the product (F2 F3), the stochastic factors
F3 and F3 were assumed to be statistically independent,
in accordance with our analysis of applicable data avail-
able from the JU2003 study in Oklahoma City indicating

little if any correlation between these factors within several
hundred meters downwind. Assuming a positive correlation
between these factors would necessarily have increased both
the expected value and variance of their product, and hence
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would have magnified the chemical threat zones estimated
for our illustrative HCN-release scenario. Improved esti-
mates of correlation between F2 and F3 require new field
data from urban tracer-release studies specifically designed
to address this question over a broad range of downwind
distances.

6) Our analysis did not account explicitly for either sam-
pling/measurement error pertaining to sample moments of
concentration, which can be substantial [42–44]. Neither
did we account explicitly for uncertainty associated with
approximation (5) used to predict urban realizations of Mn

conditional on corresponding realizations of M2 as evident
in Fig. 2, even for relatively small n with n > 2. Incorporating
these additional uncertainties into our approach would mag-
nify the chemical threat zones estimated for our illustrative
HCN-release scenario.

Future studies should be encouraged to address these limita-
ions of this first effort to characterize and address the magnitude
f combined spatiotemporal fluctuation impacts on urban chem-
cal threat zone estimation. Much progress has been made in
eveloping and applying computational fluid dynamics (CFD)
nd large-eddy simulation (LES) models to more realistically
redict complicated atmospheric dispersion patterns that arise
n urban environments [45–47]. Some of the most realistic,
umerically intensive CFD models were recently shown to pro-
ide reasonably good and consistent predictions of concentration
ver time in a tracer-release study conducted in Manhattan [45].
owever, all of these models were characterized as being “cur-

ently too slow to be used for real-time emergency response”
n urban areas at least several km2 in size [45]. Although it
s very likely that such models will eventually be able to pre-
ict irregularities and magnitudes of spatiotemporal fluctuation
ver large-scale urban areas like those exhibited in JU2003
ata (e.g., on a statistical basis using multiple realizations),
o such capability has yet been validated. When this ability
oes become available, some or perhaps even most of the vari-
bility associated with the factors F2 and F3 we address will
ecome subsumed in the dispersion model used, and thus will
ot need to be modeled statistically as proposed here. The impor-
ant point is that the underlying variability associated with these
actors, as reflected in JU2003 data and in future urban tracer-
elease studies designed to address them, will need to be reflected
ne way or another in chemical threat assessment models. The
resent study has shown that substantial empirical joint variabil-
ty associated with these factors is not reflected in atmospheric
hemical-dispersion models now used for real-time emergency
esponse, and consequently that greater prudence is required to
rotect public health in the event of an urban chemical release
han is now widely assumed.

A strength of the present analysis – its characterization of F3
ased on multiple dispersion data sets obtained over the course
f an urban tracer-release experiment – will be important to

etain in future analyses. Additionally, F3 is expected to vary
ot just with low- versus high-wind-speeds, but perhaps more
redictably with atmospheric stability. Subsequent analyses of
3 will ideally distinguish between the non-homogenous mix-
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ng anticipated in the stable (often nocturnal) atmosphere and
hat which occurs in the unstable (often daytime) atmosphere.
lthough the built-up centers of urban areas with tall buildings
ften exhibit neutral stability regardless of the time of day [48],
ensely populated suburban areas [49] experience a wide range
f stability conditions, and thus F3 would be expected to change
ramatically in those areas.

Finally, it is important to emphasize that the compara-
ive chemical hazard assessments reported here using different
odeling assumptions represent hypothetical protective (not

redictive) assessments done only for illustrative purposes. As
uch, the estimated sizes of maximum potentially affected pop-
lations given in Fig. 6 do not in any way represent casualty
stimates, but rather are merely estimated populations located
ithin the indicated (cumulative) zones. These population sizes
o not reflect any protective effect of building occupancy (indoor
heltering), nor do they integrate casualty likelihood using quan-
itative dose–response information. Explicit consideration of
heltering in our study would merely change the magnitude of
opulations potentially affected, not the magnitude of relative
ifference between affected-population estimates obtained using
ur approach versus the more traditional approach, conditional
n the building occupancy assumptions used.

. Conclusions

Approximate methods examined here to account for concen-
ration fluctuation differ from previously considered methods
o assess the likelihood of toxic impact from atmospherically
ispersed chemicals [9,14–16,50], in three key ways. The new
ethods proposed here: (1) apply specifically to an urban setting,

2) address both spatial and temporal (i.e., not just tempo-
al) variation in concentration, and (3) facilitate environmental
ealth protection decisions using conservative (upper-bound)
riteria consistent with the application of AEGL methodology
o identify geographic zones that include or exclude substantial
ikelihood of the occurrence of toxic effects at specified levels
f severity. A key limitation of the proposed approach arises
rom the fact that item (3) just listed – effectiveness for environ-
ental health protection – implies that this method cannot be

pplied reliably to problems that require environmental health
riage or trade-offs that may arise in complex exposure scenar-
os involving multiple chemical agents or a mixture of chemical
nd other harmful agents or processes [21]. To address triage
roblems, the proposed methods would need to be adapted to
ocus on expected, rather than upper-bound, levels of casualty,
sing an integrated probabilistic approach along lines previously
escribed [9,14,15,21].

For the hypothetical 60-min HCN-release scenario ana-
yzed, this study showed that explicit consideration of temporal
nd spatial variability in modeled concentrations caused about

20-fold increase in the predicted size of the potentially
ethally/seriously affected area, compared to the standard
ethod applied. This underestimation by the standard method
as ∼2-fold greater when this method was targeted to a 10-min

ather than 60-min AEGL. Despite its limitations, this study
llustrates a statistical-simulation method that more realistically

[

rdous Materials 152 (2008) 228–240 239

ddresses spatiotemporal concentration variability than current
tandard methods. Further research and field data are needed for
mproved stochastic methods to assess spatiotemporal fluctua-
ion effects.
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